
1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2883628, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Simulating Liquids on
Dynamically Warping Grids

Hikaru Ibayashi, Chris Wojtan, Nils Thuerey, Takeo Igarashi and Ryoichi Ando

Abstract—We introduce dynamically warping grids for adaptive liquid simulation. Our primary contributions are a strategy for
dynamically deforming regular grids over the course of a simulation and a method for efficiently utilizing these deforming grids for liquid
simulation. Prior work has shown that unstructured grids are very effective for adaptive fluid simulations. However, unstructured grids
often lead to complicated implementations and a poor cache hit rate due to inconsistent memory access. Regular grids, on the other
hand, provide a fast, fixed memory access pattern and straightforward implementation. Our method combines the advantages of both:
we leverage the simplicity of regular grids while still achieving practical and controllable spatial adaptivity. We demonstrate that our
method enables adaptive simulations that are fast, flexible, and robust to null-space issues. At the same time, our method is simple to
implement and takes advantage of existing highly-tuned algorithms.

Index Terms—Computer Graphics, Physics-based Animation, Fluid Simulation, Liquid, Adaptivity, Curvilinear Grids.

F

1 INTRODUCTION

L IQUID simulations for computer graphics have long
dazzled audiences with their ability to reproduce vi-

sually intricate physical features like vibrant water splashes
and subtle ripples. Previous researchers have endeavored
to reproduce these effects by designing algorithms specific
to each phenomenon. Examples of this strategy include
thin sheets [1], [2], water droplets [3], foams [4], [5], [6],
underwater bubbles [7], [8] and capillary waves [9], [10].

An alternative to developing algorithms for specific phe-
nomena is to use spatially adaptive simulation. Unstruc-
tured grids have been the main ingredient to achieve this
goal. Examples of methods employing unstructured grids
include octrees [11], [12], tetrahedral grids [13], [14], [15],
[16], and Voronoi diagrams [17], [18], [19]. A central ben-
efit of adaptive simulations is the capability of simulating
large-scale phenomena at a feasible computational cost [12],
[20]. The main idea of our work is to enhance existing
regular grid algorithms to deliver dynamic spatial adap-
tivity without excessive computational overhead. Common
strategies for simulating with unstructured meshes come
with significant complications, namely inefficient memory
access and implementation complexity due to non-trivial
adaptive mesh refinement. Meanwhile, current adaptive
methods based on structured grids only offer limited types

• H. Ibayashi is with the Department of Computer Science, the University
of Southern California, Los Angels, CA, 90007.
E-mail:ibayashi@usc.edu

• C. Wojtan is with the Visual Computing Group, the Institute of Science
and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
E-mail:wojtan@ist.ac.at

• N. Thuerey is with the the Technische Universität München, the Arcis-
straße 21, 80333 München, Germany.
E-mail:nils.thuerey@tum.de

• T. Igarashi is with the Department of Computer Science, the University of
Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
E-mail:takeo@acm.org

• R. Ando is with the National Institute of Informatics, Chiyoda-ku, Tokyo
101-8430, Japan.
E-mail:rand@nii.ac.jp

Manuscript received April 19, 2005; revised August 26, 2015.

of deformation. In this context, we propose a novel adaptive
method with dynamically warping grids, which includes
four technical contributions:
• Deformation solver We present a new method to adap-

tively warp a Cartesian grid by iteratively solving a non-
linear system. Our deformation solver quickly adapts the
grids to the specific region of interest while taking into
account temporal coherence (Section 4).

• Advection Solver Compatible with existing algorithms
Our advection method is able to reuse off-the-shelf algo-
rithms like a narrow-band FLIP solver [21], the MacCor-
mack method [22], and sixth-order Weighted Essentially
Non-Oscillatory (WENO) interpolation [23] to advect the
velocity and the surface geometry (Section 5).

• Pressure solver on deforming grids We introduce a
new pressure solver specifically designed for simulat-
ing liquid with a deforming regular grid. Our solver is
straightforward to implement and avoids the null-space
issues typically associated with hexahedral mesh solvers.
(Section 6.1)

• Generalized Ghost Fluid method We propose a new
formulation to accurately treat free surface boundary con-
ditions extending the ghost fluid method [24]. We show
that our approach delivers second-order accuracy on our
warped grids and the technique generalizes to arbitrary
discretizations (Section 6.2).

2 RELATED WORK

Our work is based on Eulerian fluid simulations. Eule-
rian fluid animation has flourished since the introduction
of unconditionally stable semi-Lagrangian advection by
Stam [25]. Afterward, Foster and Fedkiw [26] enforced free-
surface boundary conditions to simulate liquids. Since then,
Marker-And-Cell (MAC) grids combined with the level-set

mailto:ibayashi@usc.edu
mailto:wojtan@ist.ac.at
mailto:nils.thuerey@tum.de
mailto:takeo@acm.org
mailto:rand@nii.ac.jp

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2883628, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Fig. 1. Liquid leaking out of a container with holes. Our dynamically warping grids adaptively capture detailed motions without the computational
expense of unstructured grids. The left image depicts the surface mesh and the corresponding FLIP particles color-coded by the grid cell size, while
the right image shows a cross-section. The simulation used 1283 cells and ran with 25 seconds per time step, and 1.8 minutes per video frame.

method have become the standard method for grid-based
liquid simulation. MAC grids were originally introduced
to graphics by Harlow and Welch [27] and to computer
graphics by Foster and Metaxas [28]. Since then, researchers
have continually extended them to support second-order
accurate boundary conditions for free surfaces [24], and
to handle two-way coupled rigid bodies [29]. Interested
readers are referred to the book by Bridson [30] for an
overview of the state-of-the-art in fluid animation. Because
we target adaptivity, the remainder of this section focuses
on methods related to adaptive simulation.

2.1 Arbitrary Lagrangian-Eulerian method
Our method is similar to the arbitrary Lagrangian-Eulerian
(ALE) method [31]. ALE method combines a Lagrangian
method with an Eulerian method in the sense that it uses
grids like Eulerian methods, but those grids move with
liquid like Lagrangian methods. Several works in computer
graphics also make use of ALE methods, such as translating
grids [32], [33] or adaptively refining grids [34]. We refer
interested readers to Donea et al. [35] for a comprehensive
overview of ALE methods. To the best of our knowledge,
our work is the first to computer graphics that applies the
ALE method for deforming uniform grids.

2.2 Unstructured meshes
Tetrahedral meshes have been widely used for adaptive sim-
ulations [13], [15], [16], [20], [36]. Working with tetrahedral
meshes requires high-quality mesh generation, an active
area of research [37], [38]. The cost of accessing an element
typically requires a tree traversal or hash table lookup,
which substantially lowers the cache hit rate. Researchers

have also used octree grids. Losasso et al. [11] and Setaluri
et al. [39] employed the Finite Volume Method on an octree
grid to discretize pressure and velocity similarly to the
MAC discretization. Nielsen and Bridson [40] and Ferstl et
al. [12] discretized them with the Finite Element Method,
where the pressure and the velocity are collocated. Some
have also investigated adaptive simplicial complexes [41],
[42] and Voronoi-based approaches with a particle-based
pressure solver [18], [19]. Sparse grid methods [39], [43] can
overcome many of these problems with slow access times.
Recently, Aanjaneya et al. [44] demonstrated that liquid
simulations are possible with a sparse grid discretization
based on power-diagrams. However, the necessity of such
specialized discretizations at the free surface illustrates the
difficulties that commonly arise for adaptive methods. Our
generalized boundary conditions in conjunction with the
warped regular grids circumvent such problems.

2.3 Structured grids

Curvilinear coordinates also bring adaptivity to structured
grids. The use of curvilinear coordinates dates back to the
original work of FLIP [45] and was introduced to graph-
ics by Azevedo and Oliveira [46]. Aside from curvilinear
grids, Zhu et al. [47] proposed to use a new extended
grid structure where grids were stretched horizontally or
vertically. Both of the methods used the Finite Volume
Method to discretize the pressure. Our work is related to
their methods in the sense that we also use stretched regular
grids. However, we further allow such grids to dynamically
warp over time, which gives more flexible adaptivity. In the
context of structured grids, Irving et al. [48] proposed tall
cells for liquid simulations, which vertically coarsened the

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2883628, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

grids away from the free surface, and Chentanez and Müller
[49] extended them to real-time applications.

2.4 Image warping
Image and video processing algorithms have similarly in-
vestigated deforming regular grids to adapt the image
content to various constraints. For still images, researchers
have demonstrated that feature-aware deformations can
help to preserve salient regions of an image [50]. Non-linear
deformations of video streams were likewise proposed to
robustly re-scale video content to different devices [51], or
to change the disparity of stereoscopic videos [52]. While
these approaches share our goal to achieve flexible deforma-
tions with regular grids, the target applications impose very
different constraints. Image deformation algorithms usually
assign a desired shape and size to each pixel. Because the
target deformation is fixed to each pixel, the problem can
often be reduced to a linear system. In contrast, adaptive
refinement algorithms are usually given a desired volume as
a function of space, so moving an element will, in fact, change
its desired volume. Because this is inherently a moving-
target problem, it inevitably results in a non-linear system. To
cope with this added difficulty, we propose a solution which
reduces the solution space in a problem-specific manner and
propose problem-specific speed-ups.

2.5 Hybrid approaches
Several researchers focused on combining Cartesian grids
with unstructured grids. For example, the methods of
Dobashi et al. [53] and Azevedo and Oliveira [46] devel-
oped overlapping grids to cover complex regions. Both
methods used Cartesian grids of different resolutions that
are translated and rotated. English et al. [54] introduced
Chimera grids, which decompose the simulation domain
into multiple regions of interest. These regions are individ-
ually discretized with different Cartesian grids and later
combined into a single linear system. Some researchers
exploited irregular meshes to capture detailed boundaries.
Feldman et al. [14] adapted irregular tetrahedra to the
curved boundaries of solids, while Brochu et al. [17] devised
Voronoi-based meshes to accurately capture the geometry
and the topology of free surfaces. These hybrid approaches
improve the average cache hit rate, and our method likewise
benefits from fast memory accesses provided by regular
grids. However, in contrast to many of these approaches,
we do not employ any cells with irregular connectivity. Our
grids purely consist of warped cubes, so many tasks like the
implementation and stability analyses are simpler.

2.6 Mesh-free methods
Adaptive Smoothed-Particle Hydrodynamics (SPH) meth-
ods are also studied in the engineering literature [55], [56]
as well as interactive applications [57]. Adams et al. [58]
proposed to dynamically subdivide SPH particles, while So-
lenthaler and Gross [59] used a hierarchy model to circum-
vent the numerical issues introduced by particle splitting
and merging. Particle representations are especially well
suited for splashes, and our FLIP-based solver also employs
particles to represent small structures.

Fig. 2. Merging bunny: the top image shows the spatial (physical)
coordinate and the bottom corresponding reference coordinate at the
same timings, illustrating the magnification of local feature. 128×64×128
resolution, 10 seconds per time step and 29 seconds per video frame.

2.7 Polynomial and spectral adaptivity
Some researchers designed specific basis functions for in-
creasing efficiency. Treuille et al. [60] extracted a represen-
tative basis by performing Principal Component Analysis
(PCA) on a set of training examples. De Witt et al. [61] used
a Laplacian eigenfunction basis and derived how the basis
coefficients change over time. Edwards and Bridson [62]
used the Discontinuous Galerkin method to simulate de-
tailed liquids on very coarse grids by representing pressure
with a high-order polynomial basis. This class of methods
is known as p-adaptivity, and our warping grids framework
could benefit from combining it with such high-order bases.

3 METHOD OVERVIEW AND DEFINITIONS

We solve the Navier-Stokes (NS) equations by an operator
splitting approach [30]. Our method consists of three in-
dependent building blocks: a grid deformation solver for
spatial adaptivity (Section 4), the advection of velocity and
surface geometry (Section 5), and a pressure solver for
warped grids (Section 6). We note that the majority of our
results use a narrowband FLIP solver [21] for additional
efficiency. We outline our approach in Algorithm 1, and
we describe each of the components in more detail in the
following sections.

Before we start discussing our algorithm, we would like
to define our terminology, which follows ALE practice [35].
We refer to coordinates in the physical space as ”spatial
coordinates”. Quantities defined in this coordinate can be
directly visualized (Figure 2 top). “Reference coordinate”,

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2883628, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Algorithm 1: Simulation Loop
input : Velocity field and the level-set ut and φt.
output: New velocity field and the level-set ut+∆t and

φt+∆t.

1 Solve the grid deformation and get the mesh velocity
uD (Section 4)

2 Convert ut and uD to the reference coordinate ūt and
ūD

3 Advect u∗t ← Adv(ut) through ūt − ūD on the
reference coordinate (Section 5)

4 Advect φ∗t ← Adv(φt) through ūt − ūD on the
reference coordinate (Section 5)

5 Add force to u∗t
6 Project ut+∆t ← Proj(u∗t) (Section 6)
7 Re-distance φt+∆t ← Redist(φt)

on the other hand, denotes the coordinate on uniform grids
(Figure 2 bottom). We exploit reference coordinates for the
convenience of calculation, but quantities in this coordinate
have no direct physical correspondences. Deformation solver
is the operation that produces a vector field that we use to
deform a uniform grid. “Mesh velocity” denotes the change
of this vector field over time.

4 DEFORMATION SOLVER

The problem of deforming a grid has been revisited many
times throughout the image- and geometry-processing lit-
erature. The most efficient of these algorithms address the
problem by assigning a desired deformation to each element
and then deforming each element to optimally match the
target. Because the target deformation is fixed to each element,
the problems can often be reduced to a linear system. How-
ever, in our application of adaptive refinement, the desired
deformation depends on interesting physical behaviors,
which will inevitably be a function of physical space. Thus,
the target deformations of the elements will change as the
grid deforms, and the system is fundamentally non-linear.
To cope with this difficulty, we exploit the structure of our
particular problem in order to both reduce the dimension
of our solution space (Section 4.1) and devise numerical
acceleration strategies (Section 4.4).

4.1 Defining the problem

We first note that our deformation aims to control element
volumes instead of completely general deformations. We can
exploit this to reduce the solution space of our deformations
from a 3-dimensional displacement vector field down to a
scalar field. To do this, we first note that the volume of an
element can be computed as the cell’s rest volume added
to divergence of the deformation field integrated over the
cell, according to the divergence theorem. Then we note that
the divergent part of a vector field is uniquely described by
the gradient of a scalar field, according to the Helmholtz
decomposition. Thus, we can remove all deformations that
are irrelevant to our sizing function by restricting each
element’s deformation to x(ξ, ϕ) = ξ +∇ξϕ, where ξ is the
reference coordinate and ϕ is a scalar field containing all of

Fig. 3. Combing a liquid: the left side of the zoomed image highlights our
warped grids adapting near the solid boundaries, making the accurate
interaction with cylinders possible.128×64×128 resolution, 12 seconds
per time step and 30 seconds per video frame.

the degrees of freedom in the deformation. In addition, to
encode the region of interest, i.e. the region a user wants
to emphasize, our solver is fed a user-defined scalar field,
which we call sizing function or fsize(x). Sizing function can
be interpreted as a field of sinks in the spatial coordinate.
By putting a large sink at a specific area, a user can make
nodes concentrated and obtain a fine grids there. Therefore,
we obtain ϕ via the following non-linear Poisson equation:

∇2
ξϕ(ξ) = fsize

(
x(ξ, ϕ)

)
. (1)

Each time step, we solve for the scalar field ϕ and then
deform the grid according to x(ξ, ϕ). We store ϕ at cell
centers, and discretize the Laplacian operator by the seven-
point Laplacian matrix. We evaluate ∇ξϕ on vertices and
use it to displace the vertices. This nodal staggered dis-
cretization naturally avoids the null-space problems that
can occur on collocated discretizations. We solve Eq. (1)
by iteratively solving a linearized version of the equation
with ϕ on the right hand side fixed to the value produced
by the previous iteration. Each iteration imposes Neumann
boundary conditions nΩ · ∇ξϕ = 0, where nΩ is the
boundary of our grid (not the boundary of our simulation
domain). To make sure a solution exists in each iteration, we
re-normalize the right hand side by first offsetting it with a
constant γ such that

∫
Ω(fsize(x(ξ, ϕ)) + γ) dVξ = 0. Then,

to ensure a numerically stable scaling, we divide the vector
on the right hand side by its minimum value.

4.2 Sizing Function

As we described in Section 4.1, we propose a sizing function
that is defined by users to emphasize the region of interest.
We would like to note that although it gives us the intuition
of the sink field, our sizing function is heuristically de-
signed, and is not intended to mimic any particular physical
quantity in the real world. We adopted a criteria of using the
liquid surface and the region of large velocity as the region
of interest. There could be various ways to define a sizing

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2883628, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

function but we found that it becomes quite controllable
when formulated as a sum of exponential functions:

fsize(x) = − exp
(
− αφ φ̂

)
+ exp

(
− βu ||u||

)
, (2)

where φ̂ denotes the distance from the free surface and
||u|| denotes the magnitude of the velocity at point x. The
relative importance of these two terms is weighted by user-
weighted parameters αφ and βu. All of our examples use
the values αφ = 7 and βu = 0.5, except for Figure 6
where we have used a static warped grid generated from
the initial fluid condition with the same parameters. In
case a user wishes to emphasize another region of interest,
any additional term can be similarly added to Eq. (2). For
example, for a scene with detailed boundary interactions
(Figure 3), we add an additional term − exp

(
− γψ ψ̂

)
,

where ψ̂ is the distance from the solid boundary, and we
set γψ = 7. We evaluate the sizing function at cell centers
and apply a small amount of blurring to ensure smoothness.

4.3 Temporal Deformation Penalty
Depending on the sizing function fsize, the solution to Eq. (1)
can produce temporally flickering deformations. We intro-
duce the following energy function to penalize the drastic
motion or acceleration of our displacement field:

Ptemporal =

∫
Ω

1

2
ρ1

∣∣∣∣∣∣∂∇ξϕ
∂t

∣∣∣∣∣∣2 +
1

2
ρ2

∣∣∣∣∣∣∂2∇ξϕ
∂t2

∣∣∣∣∣∣2dVξ. (3)

where ρ1 and ρ2 are tunable control parameters. Discretizing
the time derivatives with implicit Euler and minimizing
Eq. (3) with respect to ϕt+1 gives us the following equation:(ρ1

∆t2
+

ρ2

∆t4

)
∇2
ξϕt+1 =

(ρ1

∆t2
+

2ρ2

∆t4

)
∇2
ξϕt−

ρ2

∆t4
∇2
ξϕt−1,

(4)
where ϕt−1, ϕt, and ϕt+1 denote the value of ϕ at the
previous, current, and next time step. Finally, we add Eq. (4)
to Eq. (1) to get an equation for ϕ that trades off between
temporal coherence and respecting the sizing function:(

1 +
ρ1

∆t2
+

ρ2

∆t4

)
∇2
ξϕ = fsize

(
x(ξ, ϕ)

)
+(ρ1

∆t2
+

2ρ2

∆t4

)
∇2
ξϕt −

ρ2

∆t4
∇2
ξϕt−1. (5)

We set ρ1 = 2∆t2 and ρ2 = ∆t4 throughout our examples.
Once again, we re-normalize the right-hand side of the
equation to ensure stability.

4.4 Speeding-up the Solver
Repeatedly solving the linear system in Eq. (5) can be
expensive. We accelerate our solver by exploiting the fact
that the left-hand side of our linear system remains the same
throughout our simulation, allowing us to pre-compute a
preconditioner at the beginning of a simulation. In our
work, we have employed an Algebraic Multigrid (AMG)
method provided by Demidov [63] as a preconditioner. For
coarsening and smoothing operators for AMG, we used
the Smoothed Aggregation technique and a Gauss-Seidel
smoother provided with the library. Our method benefits
from such a multigrid method since the domain of our de-
formation grids does not involve any irregular boundaries.

Unlike the pressure solver, our deformation solver does
not need to reach an accurate solution in practice. In our
case, we stop the iteration when the maximal change per
iteration is less than the half of a grid cell size. Further-
more, at each iteration we only perform three steps of the
Biconjugate gradient stabilized method (BiCGSTAB), and re-
evaluate the right-hand side of Eq. (5), which we found to
converge quickly and stably.

We solve the deformation by first constructing a multi-
resolution pyramid by repeatedly down-sampling grids by
a factor of two. We start with performing our deformation
solver from the coarsest resolution, upsample the solution
and continue to the next higher resolution. In our examples,
we solve only up to one level coarser resolution than the
finest resolution. The deformation at the finest resolution is
computed simply by subdividing the grids from the previ-
ous level. To prevent each solver iteration from overshooting
the solution, and thus leading to a poor convergence rate,
we damp each update by fifty percent .

5 ADVECTION

We follow an ALE formulation of the form [35]:

∂u(ξ)

∂t
+ c̄(ξ)∇ξu(ξ) = 0. (6)

where c̄ = ū(ξi) − ūD(ξi) and we denote vector qualntity
a in the spatial coordinate as ā when in the reference
coordinate. This can be interpreted as advecting the material
velocity u along convective velocity c̄, which is defined as
the difference of motion between fluid and the background
mesh. The mesh velocity uD is defined as:

uD =
∂∇ξϕ
∂t

. (7)

One may approximate Eq. (6) with a semi-Lagrangian ad-
vection in the spatial coordinate, but in our method, we use
reference coordinates to perform semi-Lagrangian advec-
tion. Finally, the convective velocity is obtained as follows,

c̄(ξi) = J−1u(xi)− J−1uD(xi), (8)

where ξi and xi denote the corresponding cell centers on
respective coordinates, and J is the grid Jacobian, which
will be precisely defined in Section 6.1. One remarkable
benefit of our advection scheme is that it automatically
incorporates the effect of dynamically warping grids us-
ing starndard advection schemes. For example, we have
employed the MacCormack method [22] combined with
the WENO interpolation [23] to advect both the level-set
and the velocity, as well as the second-order Runge-Kutta
scheme for advecting FLIP particles. In addition, unlike
conventional unstructured adaptive methods, we do not
need to access a grid element by an O(logN) tree traversal.

6 PRESSURE SOLVER ON WARPED GRIDS

At the heart of our method’s adaptivity is a pressure solver
that runs on a warped grid while being numerically robust
and straightforward to implement. Our pressure solver also
includes a novel technique to realize second-order accurate
Dirichlet boundary conditions on a warped grid, which is
formulated via the generalization of the well-known ghost
fluid technique [24].

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2883628, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

(Sec)

Entire Pressure Projection Matrix AssemblyDeformation Solve PCG Solve FLIP Operations

0

4

8

12

16

20

24

28

(Sec)

Time Per Time Step

Liquid Combing

Breaking Dam

Leaking

Ripples

Bunny Merging

0

20

40

60

80

100

120

140

(Sec)

Time Per Video Frame

Performance Profile for Leaking Scene (Average)
Deformation Solver 2.4 sec
Entire Pressure Projection 5.5 sec
Matrix Assembly 2.4 sec
PCG Solver 2.5 sec
PCG Iteration Count 31
FLIP Operations 6.7 sec
FLIP Particle Count 1.1× 106

Time Per Time Step 25 sec
Time Per Video Frame 110 sec
Maximal Volume Change Ratio 17

Fig. 4. Timings of our examples

6.1 Kinetic Energy Minimization
Our discretization uses piece-wise constant velocity vec-
tors stored at cell centers and piecewise trilinear pressure
samples stored on vertices. We derive our pressure solver
through kinetic energy minimization [29]:

minimize
p

∫
Ω

1

2
ρ
∣∣∣∣∣∣ ∗u− ∆t

ρ
∇p
∣∣∣∣∣∣2dV, (9)

where ∆t,
∗
u, Ω, ρ denote the time step size, the intermediate

velocity after the advection, the liquid domain, and the
fluid density, respectively. We solve Eq. (9) based on the
Finite Element Method (FEM). We refer to the reference
coordinates with ξ = (ξ, η, τ) and the spatial (physical)
coordinates with x = (x, y, z). We express the trilinear
pressure function by a sum of shape functions weighted by
the pressure samples on vertices:

p(ξ) =
8∑
i=1

Ni(ξ)pi, (10)

where Ni is the trilinear shape function defined on vertex
i. Taking the gradient of both sides of Eq. (10) with respect
to x (using the chain rule), and then substituting the result
into Eq. (9) gives:

minimize
p

n∑
i=1

∫
Ωi

1

2
ρ
∣∣∣∣∣∣ ∗u− ∆t

ρ
J−1∇ξ

8∑
j=1

Njpj

∣∣∣∣∣∣2|J |dVξ,
(11)

where n and Ωi denote the total cell count and a cubic cell
domain in the reference coordinates, ∇ξ = (∂∂ξ

∂
∂η

∂
∂τ)T , and

dVξ = dξ dη dτ . |J | is the determinant of a Jacobian matrix
J ∈ R3×3 with respect to ξ with each entry given by:

Jij =
∂xj
∂ξi

=
∂

∂ξi

{ 8∑
k=1

Nk(ξ)vk
}
j
, (12)

where {}j denotes the jth component of a vector, and vk is
the position vector of vertex k of the warped cube element
in spatial coordinates. This Jacobian determinant encodes
the relative volume change by a change of coordinate |J | =
dVx/dVξ where dVx = dxdy dz. Taking the derivative of
Eq. (11) with respect to pressure and setting it to zero yields
a symmetric positive-definite linear system:

n∑
i=1

∫
Ωi

(∇)TD(∇)
[
p
]
dVξ =

n∑
i=1

∫
Ωi

(∇)T |J | ∗u dVξ, (13)

where [p] ∈ R8×1 is the discretized pressure on the eight
vertices of a grid cell. Note that we reserve [] for discretized
variables. (∇) ∈ R3×8 is the matrix encoding the gradient,
which maps nodal values to a cell-centered vector. Each
entry is given by:

(∇)ij =
{
J−1∇ξNj(ξ)

}
i
. (14)

D ∈ diag(R3) is the diagonal matrix:

D =
|J |∆t
ρ

I, (15)

where I is the identity matrix. In our results, we set
ρ = 1 for convenience. We discretize Eq. (13) with an eight-
point Gaussian quadrature integration scheme (single-point
Gaussian quadrature is provably unstable, as we discuss in
Section 9). Boundary conditions of the system in the absence
of surface tension are p = 0 on free surfaces and n · ∇p = 0
on static solid boundaries [30], where n is the normal vector
of a solid. First-order accurate boundary conditions are
given by setting pi = 0 for vacuum vertices, and skipping
the evaluation of Eq. (11) for solid cells. We solve the linear
system using a preconditioned Conjugate Gradient method

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2883628, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

(PCG) with the modified incomplete Cholesky factorization1

provided by Bridson [30]. Once we have solved for the
pressure, we update the velocity at cell centers by:

unew =
∗
u− ∆t

ρ
J−1∇ξ

8∑
k=1

Nk(ξc)pk, (16)

where ξc denotes the cell center. Like other fluid simulation
methods, we extrapolate the new velocity outside of the
fluid domain after the velocity update.

6.2 Accurate Boundary Conditions
Accurate boundary conditions are essential for producing
visually pleasant liquid simulations [30]. For solid bound-
aries, We employ the method of Batty et al. [29] and scale
the diagonal entries of D and the intermediate velocity u∗

by the fraction of a cell not occupied by solid. Free sur-
face boundary conditions are less straightforward. Unfor-
tunately, first-order accurate Dirichlet boundary conditions
exhibit grid-aligned artifacts on the free surface. Enright et
al. [24] introduced the ghost fluid method to achieve second-
order accuracy for Dirichlet boundary conditions on a reg-
ular grid. Afterward, the method was extended to irregular
meshes where pressure was discretized by the Finite Volume
Method (FVM) [17], [36]. Inspired by their methods, we
generalize the ghost fluid technique to accurately handle
boundary conditions for any grid cell shape. Thus, our new
approach works not only for regular grids or tetrahedral
meshes, but also for our warped grid discretization. Further-
more, wherever our proposed method is applicable, there
is no longer a need to independently develop free surface
boundary conditions for each discretization.

We start by reviewing the ghost fluid method for the
standard MAC discretization on a regular grid. Consider
two nodes across the interface in one dimension. The veloc-
ity update at the midpoint of the nodes is:

unew = u∗ − ∆t

ρ

(pG − pL
∆x

)
, (17)

which is derived from the discretization of the pressure
gradient:

(∇)
[
p
]

=
(pG − pL

∆x

)
, (18)

where pL denotes the pressure on the “liquid” side of the
interface, pG denotes the ghost pressure on the “air” side
of the interface, and ∆x denotes the distance between the
nodes. According to Enright et al. [24], the ghost pressure
is given by pG = (φG/φL)pL, where φG and φL are the
level-set values at the nodes where pG and pL are evaluated.
Substituting this relation into Eq. (18) gives:

(∇)
[
p
]

=

4︷ ︸︸ ︷(φL − φG
φL

) ⊙︷ ︸︸ ︷(0− pL
∆x

)
. (19)

Note that the � term is exactly the first-order accurate free-
surface pressure boundary condition, and the 4 term is
a carefully-chosen multiplier that is used in the pressure
solver. Our insight here is that the ghost fluid method
can be regarded as an “upgrade” operation: The 4 term
explicitly converts the first-order accurate pressure gradient
discretization into a second-order accurate one.

1. With MIC(0) parameters τ = 0.97 and γ = 1.0

6.2.1 Generalized Ghost Fluid

We generalize this idea to higher dimensions with a novel
linear conversion operator Mφ:

(∇)2

[
p
]

=

4︷︸︸︷
Mφ

⊙︷ ︸︸ ︷
(∇)1

[
p
]
. (20)

Here, Mφ is a 3 × 3 matrix that takes a first-order-accurate
discretization of the pressure gradient vector (∇)1[p] and
converts it into a second-order-accurate one (∇)2[p]. Mφ is
then integrated into the larger pressure solver matrix. The
exact forms of (∇)1 and (∇)2 will depend on the particular
mesh discretization (regular grid, tetrahedral mesh, etc.),
and our approach requires that the pressure gradient is
piecewise constant with unknown magnitude and a direc-
tion determined by the free surface geometry. We explain
how to compute (∇)1 and (∇)2 for our particular warped
grid discretization in Section 6.2.2.

We view the derivation of Mφ as a constraint-satisfaction
problem. We begin with a 3 × 3 matrix, consisting of 9
degrees of freedom. Mapping an arbitrary 3-dimensional
input vector to the given output vector (∇)2[p] will only pin
down three of these degrees of freedom. Because we will
eventually integrate Mφ into our symmetric-positive defi-
nite linear system, we also impose symmetry and positive-
definiteness onto Mφ. We utilize the remaining degrees of
freedom to optimize the numerical stability of Mφ. We work
out these details and provide the analytical form of Mφ in
Appendix A.

Once Mφ is computed, we can enjoy second-order accu-
rate free surface boundary conditions by simply replacing
D in Eq. (13) with DMφ in all cells that overlap the free
surface boundary. We also use the second order pressure
gradient in Eq. (20) to update the velocity in Eq. (16). We
would like to emphasize that our new approach not only
enforces second-order accurate boundary conditions, but it
also preserves the symmetry and positive-definiteness of the
system matrix and exhibits provably optimum numerical
conditioning. The resulting linear solver is remarkably sta-
ble and converges quickly.

6.2.2 Ghost Fluid Applied to our Discretization

Here, we derive the forms of (∇)1 and (∇)2 in our particular
discretization, which stores both pressures and level-set
samples at grid vertices. We can analytically enforce an ac-
curate p = 0 condition at the free surface by constraining the
pressure to be a multiple of the level set function [p] = [φ]P ,
as pointed out by Ando et al. [64]. To compute the first order
pressure gradient (∇)1[p], instead of satisfying the p = 0
condition exactly at the interface, we satisfy it at each node
outside of the liquid. We do this by again expressing the
pressure as a multiple of the distance function, but this time
we replace all level set values outside of the liquid by zero:
(∇)1[p] = (∇)[φ̊]P , where [φ̊] = [max(0, φ)] is a vector of
level-set values, with all entries outside of the liquid set
to zero. By expressing the pressure in this way, we only
allow one degree of freedom per cell and introduce trilin-
ear error terms (O(∆x∆y∆z) in three dimensions), which
conveniently does not affect the first-order accuracy of this
pressure gradient discretization. Plugging these pressure
gradient discretizations into Eq. (20) gives:

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2883628, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 5. Breaking dam creating splahes and thin sheets by our dynami-
cally warping grids adapting to the surfaces: 128× 64× 128 resolution,
12 seconds per time step and 36 seconds per video frame.

(∇)[φ]P =

4︷︸︸︷
Mφ

⊙︷ ︸︸ ︷
(∇)[φ̊]P (21)

and we can divide by the unknown P to prescribe a rela-
tionship for Mφ for each boundary cell:

(∇)[φ] = Mφ(∇)[φ̊] (22)

Thus, for the purposes of solving for Mφ in Section 6.2.1,
we can use (∇)1 = (∇)[φ] and (∇)2 = (∇)[φ̊]. Note that
the level-set value φ must be the actual signed distance in
spatial coordinates. To calculate φ, we first compute the
level-set φ̄ in reference coordinates, and convert to φ in
spatial coordinates by:

φ = φ̄
/∣∣∣∣∣∣∇φ̄∣∣∣∣∣∣ = φ̄

/∣∣∣∣∣∣J−1∇ξφ̄
∣∣∣∣∣∣. (23)

This conversion operation is only valid for cells near the
boundary, but accurate distances in spatial coordinates are
only needed for boundary conditions anyway. Thus, we
perform this conversion only near the free surfaces before
the projection step.

7 VISUALIZATION

To visualize our simulation, we first construct a surface
mesh of FLIP particles on the Cartesian grids. Next, we
displace the vertices of the mesh as well as ballistic FLIP
particles through the deformation field. In our implementa-
tion, we use OpenVDB [43] to create this mesh.

8 RESULTS

We ran all of our examples on a Linux machine with
2.7GHz Intel Xeon E5-2697, using a target L∞ norm of
10−3 for the relative residual of the pressure solver. The
breaking dam set up of Figure 5 and the example of a bunny
falling into a basin in Figure 2 illustrate that our method
simulates detailed liquids. Our dynamically warping grids

Fig. 6. Expanding ripples with high adaptivity. Left: our second-order
accurate free surface boundary conditions capturing the subtle motion
of expanding ripples in a nearly open-space static pool. 128× 64× 128
resolution, 9 seconds per time step, 15 seconds per video frame and
the maximal volume ratio 200. Right: first-order accurate boundary
conditions with the same setup exhibit grid aligned artifacts. This ex-
ample employs a level-set surface tracker to demonstrate the accuracy
of our method, and the same scenario using FLIP is provided in the
supplemental video.

act to exaggerate the visually important geometric features,
such as splashes and thin liquid sheets. The cross-sections
shown in each figure illustrates the warped grid cells and
are color-coded by the local volume change induced by our
warping. A reference coordinate view of the latter example
is shown in the second row of Figure 2. It highlights that our
solver elegantly handles refining and coarsening obstacles
in the flow. Each time step took 12.5 and 10.5 seconds
for this example, of which the entire projection required
3.3 seconds and 1.6 seconds. The grid deformation solver
took 1.1 seconds and 1.0 seconds, and the maximal volume
differences were 7.4 and 15, respectively.

The liquid combing set up of Figure 3 highlights our
ability to handle the complex interaction with solid bound-
aries more accurately than a MAC solver at the same
resolution. A direct comparison with a MAC solver is
shown in Figure 10. In this example, the MAC solver is
not able to capture the small-scale splashes due to the lack
of resolution between the cylinders. In this case, we have

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2883628, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Regular Setting Deformed Setting

First-order Accuracy Ours
Resolution L1 error Order L1 error Order
32 4.9× 10−3 N/A 2.3× 10−4 N/A
64 3.0× 10−3 0.73 5.2× 10−5 2.0
128 1.5× 10−3 0.95 1.3× 10−5 2.0
256 7.1× 10−4 0.95 3.4× 10−6 2.0
512 3.6× 10−4 1.1 9.1× 10−7 1.9
1024 1.9× 10−4 1.0 2.4× 10−7 1.9

First-order Accuracy Ours
Resolution L1 error Order L1 error Order
32 4.4× 10−3 N/A 1.3× 10−4 N/A
64 1.5× 10−3 1.6 2.8× 10−5 2.1
128 4.5× 10−4 1.7 5.6× 10−6 2.4
256 1.7× 10−4 1.4 1.3× 10−6 2.1
512 6.0× 10−5 1.5 3.3× 10−7 1.9
1024 2.3× 10−5 1.4 9.8× 10−8 1.8

Fig. 7. Numerical verification of our second-order accuracy for a Pois-
son’s problem: we solve ∇2p(x) = δ(x) with p = 0 boundary condi-
tions on the lines of solid circles. The colored contour plots show the
magnitude of our actual numerical solution. The top table refers to the
experiment with the regular setting (top left) and the bottom our warped
setting (top right). Both numerical experiments show the second-order
convergence.

increased the effective resolution around the obstacles by
using the distance to the cylinders as a region of interest in
Eq. (2). Each time step of this simulation took 12 seconds
on average. Our dynamic grid deformation solver took 1.2
seconds whereas the pressure projection took 2.6 seconds.
The maximal volume ratio was 18 on average.

The example of Figure 6 verifies that our method yields
the expected gain in visual quality when using second-order
accurate boundary conditions. We set up the scene with
four small droplets on a static pool with a high degree of
spatial adaptivity of a maximal volume ratio of 200. In this
example, our second-order accurate boundary conditions
shown on the left can capture both sharper splashes and
propagating ripples more accurately than the first-order
accurate boundary conditions shown on the right. Each time
step of this simulation took 8.9 seconds, and the pressure
projection took 5.7 seconds on average. In this specific
example, we have used a static warped grid (instead of
deforming it over time), and we used the level-set method
for tracking liquid surfaces to demonstrate our visual ac-
curacy. For clarification, we also provide an example of the
same setup using FLIP in the supplemental video. We note
that when FLIP is employed, a subtle noise on the surface
persists once the particles are perturbed. However, these

Fig. 8. Comparison of a drop falling into a pool using three different
solvers. Our method successfully captures the thin sheets of a crown
splash at 1283 resolution, while the MAC method fails to simulate such
detail without doubling the resolution. The adaptive method of Ando et
al. [20] successfully recovers small-scale details but leads to significantly
longer runtimes. Timing details are given in Table 1.

artifacts are orthogonal to our boundary conditions and
could be alleviated by post-processing the liquid surface.

The simulation of liquid leaking from a container with
holes in the bottom is shown in Figure 1. Our method
can reproduce the visually interesting streams of turbulent
water. A MAC solver, on the other hand, needs to double
the resolution to reproduce similar apparent detail. The
comparison with the MAC solver for this example at the
same resolution is shown in Figure 10, as well as in the
supplemental video. Each time step took 25 seconds, grid
deformation 2.4 seconds, and the pressure projection 5.5
seconds on average. The maximal volume ratio of this
example was 17 on average.

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2883628, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Method Resolution Time Per Step [s]
MAC 1283 4.28
Ours 1283 10.2
MAC 2563 26.4
[20] 2563 29.0

TABLE 1
Timings of Figure 8.

8.1 Numerical Verification

We additionally performed a numerical verification for our
free surface boundary conditions, and observe that it yields
second-order convergence into the analytical solution. We
set up our numerical test in 2D with a single point source
of divergence at the center, and solve ∇2p(x) = δ(x) with
the p = 0 boundary conditions enforced on the surface of a
circular domain. The analytical solution to this configuration
is given by p(x) = G(||x||) − G(r), where G and r denote
the Green’s function solution of Laplace’s equation, and the
radius of a circle.

We measured the average of the L1 norm of the error
on the surface, and examined the convergence factor by
doubling the resolution, similar to Enright et al. [65] and
Batty [66]. Our results in Figure 7 show that both with
and without the grid deformation the convergence rate
stays second-order. Interestingly, we also observed that the
convergence rate improves even more when our sizing func-
tion is applied. In this case, our method (with parameters
αφ = 7, βψ = 0 and γu = 0) further improves the solution
by increasing the effective resolution around the surface.

8.2 Timings

A detailed performance breakdown for our method is
shown in Figure 4. In all of our examples, the cost of the
grid deformation solver was less than 10 percent of the
whole simulation time, and the timings for the PCG solver
were close to the timings for assembling the linear system.
For the leaking scene example, the average total cost spent
on these two operations (deformation solver and the matrix
assembly) was 4.8 seconds. Hence, the computational over-
head of our method compared to a standard liquid solver is
approximately 19 percent. Note that since we highly depend
on the performance of a linear system solver for the grid
deformation as well as the pressure solver, we expect that
our solver can be sped up with more sophisticated methods,
such as a Schur complement solver [67]. Note that the
timings for the grid deformation of Figure 6 are omitted
since we did not dynamically warp the grid in this example.

8.3 Comparisons

Figure 8 shows a comparison of a drop falling into a pool
of liquid using three different solvers: our method, a regular
MAC solver and the adaptive method of Ando et al. [20].
Animations for all solvers are provided in the supplemental
video. For this setup, our method with 1283 resolution can
capture fine details, e.g., for the crown splash after the drop
impact. Such features are noticeably less detailed using a
regular MAC grid at the same resolution. Doubling the
resolution of the MAC grid would resolve the features,

Fig. 9. Pressure surface plot with a single strong velocity initiated at
the center pointing upward. Left: a single-point Gaussian quadrature
integration rule applied to integrate Eq. (13) exhibits oscillation due to
null-space issues. Right: our eight-point (four-point in 2D) Gaussian
integration rule removes the artifacts.

but leads to very significant increases in runtime. In this
case the MAC grid runtime is 2.58 times higher than our
1283 warped grid. The method of Ando et al. [20] enables
large-scale simulations with aggressive adaptivity, but the
overhead arising from the unstructured BCC-meshes can
counteract gains in performance at moderate resolutions.
The resulting simulation recovers small-scale details but
leads to an almost three times higher runtime than our
method. The timings of this comparison can be found in
Table 1.

9 DISCUSSION

We observe ringing artifacts when a naive single-point
Gaussian quadrature integration rule is employed to inte-
grate Eq. (13). This issue arises from a null-space in the sys-
tem. An example of our null-space is the pressure gradient
evaluated at the cell center with pressure values of −1, 1,
−1, 1 assigned on four vertices in counter-clockwise. In this
specific configuration, the pressure gradient unphysically
evaluates to zero. Such a null-space is known to induce
numerical instabilities when solving a linear system, and
researchers have taken care to eliminate such instabilities
[68], [69]. We circumvent this issue by switching to the
eight-point Gaussian quadrature integration rule. Figure 9
illustrates the comparison of the effect of our integration
scheme.

Like other fluid simulation frameworks, our method
also undergoes slight volume changes depending on the
accuracy of the employed velocity advection scheme and
surface tracker. Hence, we include the method introduced
by Kim et. [6] in our solver. We distribute the correction
term to the right-hand side of our pressure solver weighted
by the Jacobian of the cells. We found this simple technique
effectively recovers the original volume. We compute the
volume on the Cartesian coordinate by summing up the
Jacobians weighted by a cell fraction of fluid.

We note that an alternative to our discretization, aside
from the boundary conditions, is the method by Azevedo
and Oliveira [46] where FVM is employed. We prefer our
FEM-based discretization since the FVM is known to intro-
duce accuracy errors when computing pressure gradients

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2883628, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Fig. 10. Comparison with the MAC method. Left side shows our method,
right side the MAC solver at the same resolution.

unless the circumcenter of an element is chosen as a sam-
pling location of pressure. As pointed out by Batty et al. [36]
the pressure differentiation degrades to the first-order accu-
racy if it is not evaluated at the circumcenter. We also note
that the method of Ferstl et al. [12] can be extended to use
our pressure solver. Our work introduces novel generalized
second-order accurate boundary conditions, which could
also be beneficial for these other discretizations.

Using a FLIP surface tracker adds persistent surface
noise to any discretization, and subtle surface bumps are
visible in our FLIP results as well. We create our surfaces
by extracting the surface in reference coordinates and then
warping it to spatial coordinates, so our warped grids will
warp the existing FLIP artifacts along with it. This warping
essentially makes isotropic FLIP artifacts smaller and more
anisotropic, depending on the sizing function. In the end,
these artifacts are orthogonal to our boundary conditions,
and they can be alleviated by post-processing the liquid
surface.

Currently, our deformation tends to produce thin ele-
ments on liquid surfaces, which has a side effect of robustly
capturing thin sheets of liquid. On the other hand, we see
that these thin features can introduce visible artifacts along
the elongated directions. In future work, we would like to
utilize methods developed for image warping [51], [52] to
address the issue. Such vector-valued solvers could enable
additional rotational displacements, allowing us to increase
the expressiveness of the achievable deformation, at the
expense of more computational degrees of freedom. Similar
to Zhu et al. [47], our warped grid could be used to produce
an effect similar to non-reflecting boundary conditions.

Our current implementation limits the scale of adaptiv-
ity, primarily because of the increased cost of deformation
solver and the limited CFL number. This issue is common
among spatially adaptive simulation methods, where a time
step size must be adjusted according to the ratio of the

maximum velocity and the minimum grid cell size. This re-
striction could be reduced by advecting grid points through
the velocity field, as demonstrated by Fan et al. [70] for
solids.

The types of grids generated by our method are naturally
limited to those with the connectivity of a regular grid.
Consequently, our method cannot create some grid configu-
rations like uniformly tiny cells all around the boundary of a
closed region but uniformly large cells in the interior. On the
other hand, we do not restrict the boundary of our grid to
the boundary of the simulation, so our method can certainly
create a region of fine cells surrounded by coarse cells.
We note that this topic only affects the calculation of the
deformation itself, and does not influence our generalized
boundary conditions, pressure solver, or advection strategy.

The numerical conditioning depends on element quality
in the same way as other curvilinear grid methods, and the
warping often results in an increased number of active cells
compared to a standard MAC solver at the same resolution.

Although our method benefits from the memory access
patterns of regular grids, our implementation is not yet
optimized to its full extent. Techniques such as the efficient
sparse grid methods [39], [43], [71], [72] were shown to yield
very high performance, but we point out that the fundamen-
tal ideas we introduce are orthogonal to the aforementioned
works. Our method for warping grids could be used in
conjunction with these techniques to further increase the
amount of resolved detail.

9.1 Momentum Preservation
We want to point out that our velocity field is not exactly
momentum preserving because of the moving mesh. Sup-
pose that we define momentum of an element i as:∫

Ωi

u(x)dV, (24)

where u(x) and Ωi denote the continuous function of veloc-
ity and the volumetric region of an element respectively. For
simplicity, we set ρ = 1 in this exposition, because density
is constant in our case. The change of momentum over time
is given as:

d

dt

∫
Ωi

u(x)dV =

∫
Ωi

∂u(x)

∂t
dV +

∮
∂Ωi

u(x)(uD(x) ·n)dS,

(25)
where ∂Ωi denotes the boundary of the region Ωi. Notice
that the second term of Eq. (25) on the right considers a
flux of momentum on the region boundary. We note that
our advection scheme, although it takes into account mesh
velocity, does not compute momentum flux on element
boundaries. Although this violation does not seem to be a
serious cause of visual artifacts so far, further investigation
is needed to achieve more accurate dynamics.

10 CONCLUSION

This paper presented dynamically warping grids for liquid
simulations. We devised a method to allow flexible spatial
adaptivity on regular grids. Consequently, our method can
capture complex and diverse liquid motions while retaining
the advantages of structured grids. We demonstrated that

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2883628, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

our method runs in harmony with off-the-shelf algorithms
for velocity advection and surface tracking.

We also combined novel generalized second-order ac-
curate boundary conditions with our FEM-based pressure
solver to enable subtle liquid surface dynamics. We proved
that this scheme has optimal convergence properties (sym-
metry, positive definiteness, and condition number, see
Appendix A), and we have verified its accuracy through
numerical experiments. We also presented a new grid de-
formation solver with temporal coherence, which requires
less than 10% of the overall calculations.

Altogether, we demonstrated that our method improves
the visual quality of liquid simulations through the use of
adaptivity, and without excessive computational overhead
or complicated implementations. In the future, we would
like to extend our method to handle moving solid bound-
aries, two-way coupled rigid bodies and surface tension
forces. We would also like to combine our approach with
sparse grid methods [39], [43], [44], to merge the fast lookup
times of sparse grids with our method’s ability to maintain
temporal coherence and adapt to subtle changes in bound-
ary conditions.

APPENDIX A
COMPUTATION OF Mφ

We can view Eq. (20) as a conversion between an arbitrary
source vector b to the target vector a:

a = Mφb. (26)

We introduce a rotation matrix R such that:

Ra = â = (âx ây 0)T

Rb = b̂ = (b̂x 0 0)T . (27)

We then apply this change of variables to simplify the
problem

â = MRb̂ (28)

such that MR = RMφR
T and Mφ = RTMRR. We ensure

MR is symmetric and positive-definite by factoring it with
a Cholesky decomposition: MR = LRL

T
R, where LR is the

lower triangular matrix

LR =

c11 0 0
c21 c22 0
c31 c32 c33

 . (29)

This decomposition constrains Mφ to be symmetric too,
because

Mφ = RTMRR

= RTLRL
T
RR

=
(
RTLR

)(
RTLR

)T
. (30)

This also makes Mφ positive definite, because for all
nonzero vectors x and y = RTx,

yTMφy = xTRMφR
Tx

= xTMRx

> 0, by positive-definiteness of MR (31)

The positive definite property is extremely helpful for nu-
merical algorithms, but it imposes a constraint on the input
vectors a and b, namely that b̂TMRb̂ = b̂T â > 0. Physically,
this means that the angle between the first- and second-
order pressure gradients must be less than π/2 (they must
not point in opposite directions). In the rare event that this
condition is violated we resort back to the first order accu-
racy for safety. This is analogous to the strategy of clamping
small level-set values to prevent instability in the traditional
ghost fluid method. Using the Cholesky decomposition and
the zero entries of Eq. (27) to constrain MR gives us

MR =

âx/b̂x ây/b̂x 0

ây/b̂x c222 + â2
y/(âxb̂x) c22c32

0 c22c32 c232 + c233

 . (32)

This matrix still has three degrees of freedom, c22, c32, and
c33, which we use to optimize numerical stability of the
boundary conditions, by minimizing the condition number:

κ(MR) =
|λmax|
|λmin|

(33)

where λmax and λmin are the maximum and minimum eigen-
values of MR. According to Marshall and Olkin [73], the
following inequality holds for any positive-definite matrix:

κ

(
U11 U12

U21 U22

)
≥ κ(U11). (34)

Applying this to our case,

κ(MR) ≥ κ
(
âx/b̂x ây/b̂x
ây/b̂x c222 + â2

y/(âxb̂x)

)
. (35)

Our strategy will be to first manipulate our degree of free-
dom c22 on the right hand side to minimize the lower bound
on κ(MR). Then, we will try to optimize MR’s eigenvalues
such that κ(MR) is exactly equal to that lowest possible
condition number. We first analytically minimize the right
hand side of Eq. (35) by setting c222 = (â2

x + â2
y)/(âxb̂x).

Next, we set c32 = 0, which conveniently factors the char-
acteristic polynomial of MR into a scalar times the upper
left 2 × 2 sub-problem that we already minimized. Finally,
we ensure that this third eigenvalue is neither a minimum
nor a maximum (it does not affect the condition number)
by setting it to the average of the other two eigenvalues,
which are guaranteed to be positive due to the positive-
definiteness property. At this point, we have constrained all
the degrees of freedom in MR, and its condition number
is equal to that of its optimized upper left sub-matrix (the
inequality in Eq. (35) becomes an equality). Therefore, it has
the minimum possible condition number. The final matrix is
given by:

MR =

âx/b̂x ây/b̂x 0

ây/b̂x (â2
x + 2â2

y)/(âxb̂x) 0

0 0 (â2
x + b̂2y)/(âxb̂x)

 . (36)

This matrix MR achieves second-order accurate bound-
ary conditions, symmetric positive-definiteness, and prov-
ably optimum numerical conditioning. The resulting linear
solver is remarkably stable and converges quickly in prac-
tice.

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2883628, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

APPENDIX B
NUMERICAL VERIFICATION OF PRESSURE SOLVER

We ran our pressure solver on a Taylor Green vortex
velocity field, of which the analytical solution is known.
This experiment is absent of free surfaces but allows us
to accurately evaluate the behavior of the pressure solver
under deformation. We measure L1 error of pressure and
plot convergence as we double the grid resolutions while
keeping the sizing function constant (Figure 11 bottom left).
Figure 11 shows the result of varying resolutions ranging
from 32×32 to 1024×1024. The error measurements clearly
show that our pressure solver properly converges to the
analytical solution under refinement. As a consequence,
our method likewise yields the correct pressure gradient,
which is crucial to enforce incompressibility for the FLIP
simulations.

32×32 128 × 128 1024×1024

●

●

●

●

●

●

50 100 500 1000
Resolution

0.005

0.010

0.050

0.100

Error

Fig. 11. Error plots of our Taylor Green vortex velocity experiment.
Pressure error (top), warped grid from our sizing function (bottom left),
and the log-log graph of the total error with respect to grid resolutions
(bottom right).

ACKNOWLEDGMENT

This work was partially supported by JSPS Grant-in-Aid
for Young Scientists (Start-up) 16H07410, the ERC Starting
Grants realFlow (StG-2015-637014) and BigSplash (StG-2014-
638176). This research was supported by the Scientific Ser-
vice Units (SSU) of IST Austria through resources provided
by Scientific Computing. We would like to express my grati-
tude to Nobuyuki Umetani and Tomas Skrivan for insightful
discussion.

Hikaru Ibayashi is a CS Ph.D. student at the
University of Southern California (USC). He re-
ceived his physics bachelors degree, in 2015
and computer science master’s degree in 2017,
both from the University of Tokyo. Now, he be-
longs to the MINDS Research Group at USC. His
research interests include fluid simulation and
statistical machine learning. He is on the Dean’s
list of the University of Tokyo for his master the-
sis.

Chris Wojtan received his B.S. in Computer
Science in 2004 from the University of Illinois in
Urbana Champaign and his Ph.D. in Computer
Graphics from the Georgia Institute of Technol-
ogy in 2010. He is a recipient of the National
Science Foundation Graduate Research Fellow-
ship, the Georgia Tech Sigma Xi Best Ph.D.
Thesis Award, an ERC Starting Grant, the 2015
Eurographics Young Researcher Award, and the
2016 SIGGRAPH Significant New Researcher
Award. Chris is currently a Professor at the In-

stitute of Science and Technology Austria (IST Austria), and his current
research interests are physically-based animation and geometry pro-
cessing.

Nils Thuerey is an Associate-Professor at the
Technical University of Munich (TUM). He works
in the field of computer graphics, where a central
theme of his research are physics simulations
and deep learning algorithms. He acquired a
Ph.D. for his work on liquid simulations in 2006
from the University of Erlangen-Nuremberg. Un-
til 2010 he held a position as a post-doctoral
researcher at ETH Zurich. He received a tech-
Oscar from the AMPAS in 2013 for his research
on controllable smoke effects. Subsequently, he

worked for three years as R&D lead at ScanlineVFX, before starting at
TUM in October 2013.

Takeo Igarashi is a professor at CS department,
the University of Tokyo. He received PhD from
Dept of Information Engineering, the University
of Tokyo in 2000. His research interest is in
user interface in general and current focus is
on interaction techniques for 3D graphics. He
received The Significant New Researcher Award
at SIGGRAPH 2006.

Ryoichi Ando is an Assistant Professor at Na-
tional Institute of Informatics, Japan. Prior to
that, he has been a postdoctoral researcher at
IST Austria. He earned Ph.D. of Design from
the design department at Kyushu University in
2014. His research interests include physics-
based animations for computer graphics with a
strong emphasis on fluid.

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2883628, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

REFERENCES

[1] C. Wojtan, N. Thuerey, M. Gross, and G. Turk, “Physics-inspired
topology changes for thin fluid features,” ACM Trans. Graph.,
vol. 29, no. 4, pp. 1–8, 2010.

[2] M. Müller, “Fast and robust tracking of fluid surfaces,” in Proceedings
of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, ser. SCA ’09. New York, NY, USA: ACM, 2009, pp. 237–
245.

[3] H. Wang, P. J. Mucha, and G. Turk, “Water drops on surfaces,” ACM
Trans. Graph., vol. 24, no. 3, pp. 921–929, Jul. 2005.

[4] F. Da, C. Batty, C. Wojtan, and E. Grinspun, “Double bubbles sans toil
and trouble: Discrete circulation-preserving vortex sheets for soap films
and foams,” ACM Trans. Graph., vol. 34, no. 4, pp. 149:1–149:9, Jul.
2015.

[5] O. Busaryev, T. K. Dey, H. Wang, and Z. Ren, “Animating bubble
interactions in a liquid foam,” ACM Trans. Graph., vol. 31, no. 4, pp.
63:1–63:8, Jul. 2012.

[6] B. Kim, Y. Liu, I. Llamas, X. Jiao, and J. Rossignac, “Simulation of
bubbles in foam with the volume control method,” ACM Trans. Graph.,
vol. 26, no. 3, Jul. 2007.

[7] S. Patkar, M. Aanjaneya, D. Karpman, and R. Fedkiw, “A hybrid
lagrangian-eulerian formulation for bubble generation and dynamics,”
in Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, ser. SCA ’13. New York, NY, USA: ACM,
2013, pp. 105–114.

[8] J.-M. Hong, H.-Y. Lee, J.-C. Yoon, and C.-H. Kim, “Bubbles alive,” ACM
Trans. Graph., vol. 27, no. 3, pp. 48:1–48:4, Aug. 2008.

[9] N. Thuerey, C. Wojtan, M. Gross, and G. Turk, “A multiscale approach
to mesh-based surface tension flows,” ACM Trans. Graph., vol. 29, no. 4,
pp. 48:1–48:10, Jul. 2010.

[10] J. A. Canabal, D. Miraut, N. Thuerey, T. Kim, J. Portilla, and M. A.
Otaduy, “Dispersion kernels for water wave simulation,” ACM Trans.
Graph., vol. 35, no. 6, pp. 202:1–202:10, Nov. 2016.

[11] F. Losasso, F. Gibou, and R. Fedkiw, “Simulating water and smoke with
an octree data structure,” ACM Trans. Graph., vol. 23, no. 3, pp. 457–
462, Aug. 2004.

[12] F. Ferstl, R. Westermann, and C. Dick, “Large-scale liquid simulation on
adaptive hexahedral grids,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 20, no. 10, pp. 1405–1417, Oct 2014.

[13] B. M. Klingner, B. E. Feldman, N. Chentanez, and J. F. O’Brien, “Fluid
animation with dynamic meshes,” ACM Trans. Graph., vol. 25, no. 3,
pp. 820–825, Jul. 2006.

[14] B. E. Feldman, J. F. O’Brien, and B. M. Klingner, “Animating gases
with hybrid meshes,” ACM Trans. Graph., vol. 24, no. 3, pp. 904–909,
Jul. 2005.

[15] P. Clausen, M. Wicke, J. R. Shewchuk, and J. F. O’Brien, “Simulating
liquids and solid-liquid interactions with lagrangian meshes,” ACM
Trans. Graph., vol. 32, no. 2, pp. 17:1–17:15, Apr. 2013.

[16] N. Chentanez, B. E. Feldman, F. Labelle, J. F. O’Brien, and J. R.
Shewchuk, “Liquid simulation on lattice-based tetrahedral meshes,” in
Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, ser. SCA ’07. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2007, pp. 219–228.

[17] T. Brochu, C. Batty, and R. Bridson, “Matching fluid simulation ele-
ments to surface geometry and topology,” ACM Trans. Graph., vol. 29,
no. 4, pp. 47:1–47:9, Jul. 2010.

[18] F. de Goes, C. Wallez, J. Huang, D. Pavlov, and M. Desbrun, “Power
particles: An incompressible fluid solver based on power diagrams,”
ACM Trans. Graph., vol. 34, no. 4, pp. 50:1–50:11, Jul. 2015.

[19] F. Sin, A. W. Bargteil, and J. K. Hodgins, “A point-based method
for animating incompressible flow,” in Proceedings of the 2009 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, ser.
SCA ’09. New York, NY, USA: ACM, 2009, pp. 247–255. [Online].
Available: http://doi.acm.org/10.1145/1599470.1599502

[20] R. Ando, N. Thuerey, and C. Wojtan, “Highly adaptive liquid simula-
tions on tetrahedral meshes,” ACM Trans. Graph. (Proc. SIGGRAPH
2013), July 2013.

[21] F. Ferstl, R. Ando, C. Wojtan, R. Westermann, and N. Thuerey, “Narrow
Band FLIP for Liquid Simulations,” Eurographics’16, vol. to appear, p. 8,
May 2016.

[22] A. Selle, R. Fedkiw, B. Kim, Y. Liu, and J. Rossignac, “An uncondition-
ally stable maccormack method,” J. Sci. Comput., vol. 35, no. 2-3, pp.
350–371, Jun. 2008.

[23] C. B. Macdonald and S. J. Ruuth, “Level set equations on surfaces via
the closest point method,” Journal of Scientific Computing, vol. 35, no. 2,
pp. 219–240, 2008.

[24] D. Enright, D. Nguyen, F. Gibou, and R. Fedkiw, “Using the particle
level set method and a second order accurate pressure boundary condition
for free surface flows,” in In Proc. 4th ASME-JSME Joint Fluids Eng.
Conf., number FEDSM200345144. ASME, 2003, pp. 2003–45 144.

[25] J. Stam, “Stable fluids,” in Proceedings of the 26th Annual Conference
on Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’99.
New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 1999,
pp. 121–128.

[26] N. Foster and R. Fedkiw, “Practical animation of liquids,” in Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH ’01. New York, NY, USA: ACM, 2001,
pp. 23–30.

[27] F. H. Harlow and J. E. Welch, “Numerical calculation of timedependent
viscous incompressible flow of fluid with free surface,” Physics of Fluids,
vol. 8, no. 12, pp. 2182–2189, 1965.

[28] N. Foster and D. Metaxas, “Controlling fluid animation,” in
Proceedings of the 1997 Conference on Computer Graphics International,
ser. CGI ’97. Washington, DC, USA: IEEE Computer Society, 1997,
pp. 178–. [Online]. Available: http://dl.acm.org/citation.cfm?id=
792756.792862

[29] C. Batty, F. Bertails, and R. Bridson, “A fast variational framework for
accurate solid-fluid coupling,” ACM Trans. Graph., vol. 26, no. 3, Jul.
2007.

[30] R. Bridson, Fluid simulation for computer graphics. Boca Raton: CRC
Press, Taylor & Francis Group, CRC Press is an imprint of the Taylor &
Francis Group, an informa Business, 2016.

[31] C. Hirt, A. A. Amsden, and J. Cook, “An arbitrary lagrangian-eulerian
computing method for all flow speeds,” Journal of computational physics,
vol. 14, no. 3, pp. 227–253, 1974.

[32] M. Shah, J. M. Cohen, S. Patel, P. Lee, and F. Pighin, “Extended galilean
invariance for adaptive fluid simulation,” in Proceedings of the 2004
ACM SIGGRAPH/Eurographics symposium on Computer animation.
Eurographics Association, 2004, pp. 213–221.

[33] N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner,
W. Geiger, S. Hoon, and R. Fedkiw, “Directable photorealistic liquids,”
in Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium
on Computer animation. Eurographics Association, 2004, pp. 193–202.

[34] B. M. Klingner, B. E. Feldman, N. Chentanez, and J. F. O’brien, “Fluid
animation with dynamic meshes,” in ACM Transactions on Graphics
(TOG), vol. 25, no. 3. ACM, 2006, pp. 820–825.

[35] J. Donea, A. Huerta, J.-P. Ponthot et al., “Arbitrary lagrangian eulerian
methods,” Encyclopedia of Computational Mechanics, pp. Chapter–14,
2004.

[36] C. Batty, S. Xenos, and B. Houston, “Tetrahedral embedded boundary
methods for accurate and flexible adaptive fluids,” in Proceedings of
Eurographics, 2010.

[37] P. Alliez, D. Cohen-Steiner, M. Yvinec, and M. Desbrun, “Variational
tetrahedral meshing,” ACM Trans. Graph., vol. 24, no. 3, pp. 617–625,
Jul. 2005.

[38] F. Labelle and J. R. Shewchuk, “Isosurface stuffing: Fast tetrahedral
meshes with good dihedral angles,” ACM Trans. Graph., vol. 26, no. 3,
Jul. 2007. [Online]. Available: http://doi.acm.org/10.1145/1276377.
1276448

[39] R. Setaluri, M. Aanjaneya, S. Bauer, and E. Sifakis, “Spgrid: A sparse
paged grid structure applied to adaptive smoke simulation,” ACM
Trans. Graph., vol. 33, no. 6, pp. 205:1–205:12, Nov. 2014. [Online].
Available: http://doi.acm.org/10.1145/2661229.2661269

[40] M. B. Nielsen and R. Bridson, “Spatially adaptive flip fluid simulations
in bifrost,” in ACM SIGGRAPH 2016 Talks, ser. SIGGRAPH ’16.
New York, NY, USA: ACM, 2016, pp. 41:1–41:2. [Online]. Available:
http://doi.acm.org/10.1145/2897839.2927399

[41] M. K. Misztal, K. Erleben, A. Bargteil, J. Fursund, B. B. Christensen,
J. A. Bærentzen, and R. Bridson, “Multiphase flow of immiscible fluids
on unstructured moving meshes,” in Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, ser. SCA
’12. Aire-la-Ville, Switzerland, Switzerland: Eurographics Association,
2012, pp. 97–106.

[42] K. Erleben, M. K. Misztal, and J. A. Bærentzen, “Mathematical
foundation of the optimization-based fluid animation method,” in
Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, ser. SCA ’11. New York, NY, USA: ACM,
2011, pp. 101–110. [Online]. Available: http://doi.acm.org/10.1145/
2019406.2019420

[43] K. Museth, J. Lait, J. Johanson, J. Budsberg, R. Henderson, M. Alden,
P. Cucka, D. Hill, and A. Pearce, “Openvdb: An open-source data
structure and toolkit for high-resolution volumes,” in ACM SIGGRAPH

http://doi.acm.org/10.1145/1599470.1599502
http://dl.acm.org/citation.cfm?id=792756.792862
http://dl.acm.org/citation.cfm?id=792756.792862
http://doi.acm.org/10.1145/1276377.1276448
http://doi.acm.org/10.1145/1276377.1276448
http://doi.acm.org/10.1145/2661229.2661269
http://doi.acm.org/10.1145/2897839.2927399
http://doi.acm.org/10.1145/2019406.2019420
http://doi.acm.org/10.1145/2019406.2019420

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2883628, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

2013 Courses, ser. SIGGRAPH ’13. New York, NY, USA: ACM, 2013,
pp. 19:1–19:1.

[44] M. Aanjaneya, M. Gao, H. Liu, C. Batty, and E. Sifakis, “Power
diagrams and sparse paged grids for high resolution adaptive liquids,”
ACM Trans. Graph., vol. 36, no. 4, Jul. 2017.

[45] J. Brackbill and H. Ruppel, “Flip: A method for adaptively zoned,
particle-in-cell calculations of fluid flows in two dimensions,” Journal
of Computational Physics, vol. 65, no. 2, pp. 314 – 343, 1986.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
0021999186902111

[46] V. C. Azevedo and M. M. Oliveira, “Efficient smoke simulation on
curvilinear grids,” Computer Graphics Forum, vol. 32, no. 7, pp.
235–244, 2013. [Online]. Available: http://dx.doi.org/10.1111/cgf.12231

[47] B. Zhu, W. Lu, M. Cong, B. Kim, and R. Fedkiw, “A new grid structure
for domain extension,” ACM Trans. Graph., vol. 32, no. 4, pp. 63:1–
63:12, Jul. 2013.

[48] G. Irving, E. Guendelman, F. Losasso, and R. Fedkiw, “Efficient simu-
lation of large bodies of water by coupling two and three dimensional
techniques,” ACM Trans. Graph., vol. 25, no. 3, pp. 805–811, Jul. 2006.

[49] N. Chentanez and M. Müller, “Real-time eulerian water simulation
using a restricted tall cell grid,” ACM Trans. Graph., vol. 30, no. 4,
pp. 82:1–82:10, Jul. 2011.

[50] R. Gal, O. Sorkine, and D. Cohen-Or, “Feature-aware texturing,”
Rendering Techniques, vol. 2006, p. 17th, 2006.

[51] P. Krähenbühl, M. Lang, A. Hornung, and M. Gross, “A system for
retargeting of streaming video,” in ACM Transactions on Graphics
(TOG), vol. 28, no. 5. ACM, 2009, p. 126.

[52] M. Lang, A. Hornung, O. Wang, S. Poulakos, A. Smolic, and M. Gross,
“Nonlinear disparity mapping for stereoscopic 3d,” ACM Transactions
on Graphics (TOG), vol. 29, no. 4, p. 75, 2010.

[53] Y. Dobashi, Y. Matsuda, T. Yamamoto, and T. Nishita, “A fast simulation
method using overlapping grids for interactions between smoke and rigid
objects,” Computer Graphics Forum, vol. 27, no. 2, pp. 477–486, 2008.

[54] R. E. English, L. Qiu, Y. Yu, and R. Fedkiw, “Chimera grids for water
simulation,” in Proceedings of the 12th ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, ser. SCA ’13. New York, NY,
USA: ACM, 2013, pp. 85–94.

[55] J. M. Owen, J. V. Villumsen, P. R. Shapiro, and H. Martel, “Adaptive
Smoothed Particle Hydrodynamics: Methodology. II.” The Astrophysical
Journal Supplement Series, vol. 116, no. 2, pp. 155–209, Jun. 1998.

[56] M. Lastiwka, N. Quinlan, and M. Basa, “Adaptive particle distribution
for smoothed particle hydrodynamics,” International Journal for
Numerical Methods in Fluids, vol. 47, no. 10-11, pp. 1403–1409, 2005.
[Online]. Available: http://dx.doi.org/10.1002/fld.891

[57] Y. Zhang, B. Solenthaler, and R. Pajarola, “Adaptive sampling and
rendering of fluids on the gpu,” in Proceedings of the Fifth Eurographics
/ IEEE VGTC Conference on Point-Based Graphics, ser. SPBG’08. Aire-
la-Ville, Switzerland, Switzerland: Eurographics Association, 2008, pp.
137–146.

[58] B. Adams, M. Pauly, R. Keiser, and L. J. Guibas, “Adaptively sampled
particle fluids,” ACM Trans. Graph., vol. 26, no. 3, Jul. 2007. [Online].
Available: http://doi.acm.org/10.1145/1276377.1276437

[59] B. Solenthaler and M. Gross, “Two-scale particle simulation,” ACM
Trans. Graph., vol. 30, no. 4, pp. 81:1–81:8, Jul. 2011. [Online].
Available: http://doi.acm.org/10.1145/2010324.1964976

[60] A. Treuille, A. Lewis, and Z. Popović, “Model reduction for real-time
fluids,” ACM Trans. Graph., vol. 25, no. 3, pp. 826–834, Jul. 2006.

[61] T. De Witt, C. Lessig, and E. Fiume, “Fluid simulation using laplacian
eigenfunctions,” ACM Trans. Graph., vol. 31, no. 1, pp. 10:1–10:11, Feb.
2012.

[62] E. Edwards and R. Bridson, “Detailed water with coarse grids:
Combining surface meshes and adaptive discontinuous galerkin,” ACM
Trans. Graph., vol. 33, no. 4, pp. 136:1–136:9, Jul. 2014. [Online].
Available: http://doi.acm.org/10.1145/2601097.2601167

[63] D. Demidov, “Amgcl: C++ library for solving large sparse linear systems
with algebraic multigrid method (https://github.com/ddemidov/amgcl),”
2009.

[64] R. Ando, N. Thürey, and C. Wojtan, “A dimension-reduced pressure
solver for liquid simulations,” in Computer Graphics Forum, vol. 34,
no. 2. Wiley Online Library, 2015, pp. 473–480.

[65] D. Enright, F. Losasso, and R. Fedkiw, “A fast and accurate
semi-lagrangian particle level set method,” Comput. Struct., vol. 83,
no. 6-7, pp. 479–490, Feb. 2005. [Online]. Available: http:
//dx.doi.org/10.1016/j.compstruc.2004.04.024

[66] C. Batty, “A cell-centred finite volume method for the poisson problem
on non-graded quadtrees with second order accurate gradients,” J.

Comput. Phys., vol. 331, no. C, pp. 49–72, Feb. 2017. [Online].
Available: https://doi.org/10.1016/j.jcp.2016.11.035

[67] H. Liu, N. Mitchell, M. Aanjaneya, and E. Sifakis, “A scalable schur-
complement fluids solver for heterogeneous compute platforms,” ACM
Trans. Graph., vol. 35, no. 6, pp. 201:1–201:12, Nov. 2016.

[68] A. McAdams, E. Sifakis, and J. Teran, “A parallel multigrid poisson
solver for fluids simulation on large grids,” in Proceedings of
the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, ser. SCA ’10. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2010, pp. 65–74. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1921427.1921438

[69] B. Zhu, E. Quigley, M. Cong, J. Solomon, and R. Fedkiw,
“Codimensional surface tension flow on simplicial complexes,” ACM
Trans. Graph., vol. 33, no. 4, pp. 111:1–111:11, Jul. 2014. [Online].
Available: http://doi.acm.org/10.1145/2601097.2601201

[70] Y. Fan, J. Litven, D. I. W. Levin, and D. K. Pai, “Eulerian-on-lagrangian
simulation,” ACM Trans. Graph., vol. 32, no. 3, pp. 22:1–22:9, Jul. 2013.

[71] B. Van Opstal, L. Janin, K. Museth, and M. Aldén, “Large scale
simulation and surfacing of water and ice effects in dragons 2,”
in ACM SIGGRAPH 2014 Talks, ser. SIGGRAPH ’14. New
York, NY, USA: ACM, 2014, pp. 11:1–11:1. [Online]. Available:
http://doi.acm.org/10.1145/2614106.2614156

[72] J. Budsberg, M. Losure, K. Museth, and M. Baer, “Liquids in the croods,”
ACM DigiPro., 2013.

[73] A. W. Marshall and I. Olkin, “Norms and inequalities for condition
numbers, iii,” Linear Algebra and its Applications, vol. 7, no. 4, pp.
291–300, 1973.

http://www.sciencedirect.com/science/article/pii/0021999186902111
http://www.sciencedirect.com/science/article/pii/0021999186902111
http://dx.doi.org/10.1111/cgf.12231
http://dx.doi.org/10.1002/fld.891
http://doi.acm.org/10.1145/1276377.1276437
http://doi.acm.org/10.1145/2010324.1964976
http://doi.acm.org/10.1145/2601097.2601167
h
http://dx.doi.org/10.1016/j.compstruc.2004.04.024
http://dx.doi.org/10.1016/j.compstruc.2004.04.024
https://doi.org/10.1016/j.jcp.2016.11.035
http://dl.acm.org/citation.cfm?id=1921427.1921438
http://doi.acm.org/10.1145/2601097.2601201
http://doi.acm.org/10.1145/2614106.2614156

